

Quantum Open Development Ecosystem (QODE)

Optimization Division
Specification Document

May 29, 2025

Q-STAR

 (Quantum STrategic industry Alliance for Revolution)

1. Overview​ 3
2. System architecture and optimization steps​ 4

1) Create decision variables​ 4
2) Create objective function​ 4
3) Construct constraints​ 4
4) Formulate optimization model​ 5
5) Specify solver client attributes​ 5
6) Execute solver​ 5

3. Decision Variables​ 6
3.1. Variable Generator​ 6
3.2. Methods and Arguments​ 6
3.2.1. scalar()​ 6
3.2.2. array()​ 7
3.3. Get variable information​ 7
3.4. Example code​ 8

4. Polynomials​ 9
4.1. Arithmetic of polynomial​ 9
4.2. Arithmetic of polynomial arrays​ 9
4.3. Attributes and methods of polynomial​ 10
4.4. Example code​ 10

5. Constraints​ 13
5.1. Fix values​ 13
5.2. Limit the range of variable values​ 13
5.3. Limit the range of polynomial values​ 13

5.3.1. Equality constraints​ 13
5.3.2. Inequality constraints​ 14
5.3.3. Constraint list​ 14
5.3.4. Constraint weights​ 14

5.4. Example code​ 14
6. Model​ 17

6.1. Model class​ 17
6.2. Model attributes​ 17
6.3. Example code​ 17

7. Solver Client​ 20
8. Solver Execution​ 21

8.1. Solve function​ 21
8.2. Retrieving the result​ 21
8.3. Example code​ 22

9. References​ 23
9.1. Algebraic classes and numerics​ 23

9.1.1. SDK.Poly class​ 23

1

9.1.2. SDK.PolyArray class​ 23
9.1.3. SDK.Variable class​ 24
9.1.4. SDK.VariableGenerator class​ 24
9.1.5. SDK.sum() function​ 25
9.1.6. SDK.VariableType enum class​ 25

9.2. Constraints​ 25
9.2.1. SDK.Constraint class​ 25
9.2.2. SDK.ConstraintList class​ 26
9.2.3. Functions​ 26

9.3. Model classes and functions​ 26
9.3.1. SDK.Model class​ 26

9.4. Solve (Solve classes and functions)​ 27
9.4.1. SDK.Result.Solution class​ 27
9.4.2. SDK.Result class​ 27
9.4.3. SDK.Result.Values class​ 27

2

1.​ Overview
This document describes an interface specification of a software development kit, hereinafter
referred to as “the SDK,” which is designed to solve a wide variety of combinatorial optimization
problems.
This SDK is part of a software ecosystem designed to uniformly handle quantum computers
including quantum annealing machines and quantum gate computers, shown in Fig. 1. 1. While
its primary application currently targets mathematical optimization problems, it is expected to
encompass quantum chemistry calculations and other applications in the future.

Fig 1.1 A schematic ecosystem for quantum computing

The specification will cover the following items.

●​ Assumed system architecture
●​ Process of creating (formulating) a model and obtaining a solution
●​ Specification of arguments and return values of functions and classes required for

formulation
●​ Specifications of processing performed by functions and class methods

On the other hand, the specification will NOT cover the following items.
●​ Algorithms and hardware specifications for calculations
●​ Non-Python library specifications

The SDK assumes Python as its runtime environment. Therefore, although attributes are
described in the documentation, it is acceptable to implement them as properties.

3

2.​ System architecture and optimization steps
This specification assumes the following system architecture, shown in Fig. 1.2.

Fig 1.2 A schematic system architecture assumed in this specification.

The SDK MUST be able to perform optimization by formulating a combinatorial optimization
problem using the following steps:

1)​Create decision variables
First, create a generator (VariableGenerator) that creates decision variables. Next,
create a variable (Poly) or an array of variables (PolyArray) using the
VariableGenerator.

2)​Create objective function
Define the objective function (Poly) using the variables generated by the
VariableGenerator.

3)​Construct constraints
Construct constraints (Constraint) from polynomials using constraint creation functions.
If multiple constraints are needed, combine them into a constraint list (ConstraintList).

4

4)​Formulate optimization model
Create the optimization model (Model) from the objective function and constraints.

5)​Specify solver client attributes
Specify a machine or solver to use and create a solver client.

6)​Execute solver
Pass the optimization model and solver client, and run the optimization through the solve
function. The result of the execution is returned as Result, and the objective function
value and the variables of the optimal solution can be obtained.

5

3.​ Decision Variables
The SDK MUST support the following classes and methods to determine the decision
variables.

3.1.​ Variable Generator
The VariableGenerator class generates decision variables. This class MUST
support the following methods.

Method Return type Description

scalar() Poly Create a single variable

array() PolyArray Create multiple variables

3.2.​ Methods and Arguments
The above methods MUST support the following types of decision variables as
arguments.

Argument Type Variable type Description

variable_type string “Binary” A variable taking the value 0 or 1

“Ising” A variable taking the value -1 or 1

“Integer” A variable taking an integer value

“Real” A variable taking a real value

The above methods MUST also support the following arguments.

Argument Type Description

name string Specify the name of the variables

bounds tuple(number, number) [Integer or real variable only]
Specify the range of possible values

3.2.1.​ scalar()
Define the scalar() method that creates a single variable. The variable
MUST be returned as an instance of the Poly class, which represents the
polynomial of the variable.

6

3.2.2.​ array()
Define the array() method that creates multiple variables at once. An
array of variables (NumPy-like multidimensional array format) MUST be
returned as an instance of the PolyArray class, which represents the
polynomial array of the variable. This method MUST support the following
argument to specify the shape of the array.

Argument Type Description

shape int | tuple[int, …] Specify the shape of the
array

Once the new variables are created, the names MUST be automatically
appended with a string representing the array index. The elements and
slices MUST be retrievable in the same way as a Python list or NumPy
array. The lower and upper bounds for variables MUST be specified
collectively at the time of creation.

3.3.​ Get variable information
Define the as_variable() method that gets information about generated variables.
The following information MUST be supported by this method.

Attribute Type Description

name string Variable name

id int Variable ID number
An integer value assigned starting from 0 in order of issuance

type VariableType Variable type

lower_bound float [Integer or real variable only] Variable lower bound
None means − ∞

upper_bound float [Integer or real variable only] Variable upper bound
None means + ∞

The information about variables issued by the VariableGenerator class MUST
be retrievable by using the variables attribute. The names, lower bounds, and
upper bounds of variables MUST be modifiable later.

7

Python

3.4.​ Example code
In the example code, the library name is represented as "SDK," but you should
replace it with the actual library name as appropriate. The same applies to the
following example codes.

from SDK import VariableGenerator

gen = VariableGenerator()

q = gen.scalar("Binary")​ ​ ​ ​ # print(q) -> q_0

i = gen.scalar("Ising", name="is")​ ​ # print(i) -> is

r = gen.scalar("Real", bounds=(2.0, 3.0))​ # 2.0 <= r <= 3.0

q_arr = gen.array("Integer", 3, bounds=(1, 3))

"""

print(q_arr) -> [q_0, q_1, q_2]

print(q_arr[0]) -> q_0

print(q_arr[:2]) -> [q_0, q_1]

"""

q_mlt_arr = gen.array("Binary", shape=(2, 3))

"""

print(q_mlt_arr) ->

[[q_{0,0}, q_{0,1}, q_{0,2}],

 ​ [q_{1,0}, q_{1,1}, q_{1,2}]]

print(q_mlt_arr[0, 0]) -> q_{0,0}

print(q_mlt_arr[0, :]) -> [q_{0,0}, q_{0,1}, q_{0,2}]

"""

print(q.as_variable()) -> {name: q_0, id: 0, type: Binary}

vars = gen.variables

"""

print(vars) ->

[Variable({name: q_0, id: 0, type: Binary}),

 Variable({name: is, id: 1, type: Ising}),

 Variable({name: r_0, id: 2, type: Real, lower_bound: 2, upper_bound: 3})]

"""

vars[2].name = "r"

vars[2].lower_bound = 0.0

"""

8

print(vars[2]) ->

{name: r, id: 2, type: Real, lower_bound: 0, upper_bound: 3}

"""

4.​ Polynomials
The SDK MUST support the following classes and methods to determine the
polynomials. The SDK MUST be able to use the polynomial created as an objective
function of a combinatorial optimization problem without modification.

4.1.​ Arithmetic of polynomial
The SDK MUST support the creation of polynomial expressions by performing
quadrature operations and exponentiation on variables created by
VariableGenerator. It MUST be able to include variables from different arrays or
of different types within the same polynomial, provided they were all created by
the same VariableGenerator.
The SDK MUST also support the following logical operators.

Operator Effect

& (logical AND) x & y is equivalent to x * y.

| (logical OR) x | y is equivalent to -x * y + x + y.

^ (exclusive OR) x ^ y is equivalent to -2 * x * y + x + y.

4.2.​ Arithmetic of polynomial arrays
The SDK MUST provide the sum() method that creates polynomial expressions
from PolyArray. PolyArray MUST also be able to perform quadratic operations
with numbers and NumPy arrays.

Method Argument Return type Description

sum() axis = None | int | tuple[int, …] Poly | PolyArray Calculate the sum of variables

9

Python

4.3.​ Attributes and methods of polynomial
Polynomial class Poly MUST support the following methods and attributes to get
and change information about polynomials.

Method / Attribute Return type Description

degree() int Degree of the polynomial

is_number() / is_linear() /
is_quadratic()

bool Whether the polynomial is below a certain degree

is_variable() bool Whether the polynomial can be considered a single variable
i.e. a one-dimensional monomial with coefficient 1

variables list[Variables] Information about all variables in the polynomial

substitute() Poly The result of assigning numbers or other polynomials
to variables of a polynomial expression

4.4.​ Example code

from SDK import VariableGenerator
import numpy as np

gen = VariableGenerator()
q = gen.array("Binary", 6)
p = -q[0] + 2.3 * q[1] * q[2] - (q[3] + q[4]) ** 2 * q[5]
print(p) -> - 2 q_3 q_4 q_5 + 2.3 q_1 q_2 - q_3 q_5 - q_4 q_5 - q_0

q = gen.array("Binary", 3)
s = gen.array("Ising", 2)
n = gen.scalar("Integer", bounds=(-1, 2))
p = q[0] + s[1] - 2 * n

print(p) -> q_0 + s_1 - 2 n_0

q = gen.array("Binary", shape=(3, 3))

"""

print(q.sum()) -> q_{0,0} + q_{0,1} + q_{0,2} + q_{1,0} + q_{1,1} + q_{1,2} +
q_{2,0} + q_{2,1} + q_{2,2}

10

print(q.sum(axis=1)) ->

​ [q_{0,0} + q_{0,1} + q_{0,2},

 ​ q_{1,0} + q_{1,1} + q_{1,2},

 ​ q_{2,0} + q_{2,1} + q_{2,2}]

print(q.sum(axis=0)) ->

​ [q_{0,0} + q_{1,0} + q_{2,0},

 q_{0,1} + q_{1,1} + q_{2,1},

 q_{0,2} + q_{1,2} + q_{2,2}]

print(2 * q) ->

​ [[2 q_{0,0}, 2 q_{0,1}, 2 q_{0,2}],

 [2 q_{1,0}, 2 q_{1,1}, 2 q_{1,2}],

 [2 q_{2,0}, 2 q_{2,1}, 2 q_{2,2}]]

"""

a = np.array([[1,2,3],[4,5,6],[7,8,9]])

"""

print(q * a) ->

​ [[q_{0,0}, 2 q_{0,1}, 3 q_{0,2}],

 [4 q_{1,0}, 5 q_{1,1}, 6 q_{1,2}],

 [7 q_{2,0}, 8 q_{2,1}, 9 q_{2,2}]]

"""

q = gen.array("Binary", 4)

p = q[0] * q[1]

"""
p.degree() -> 2
p.is_number() -> False
p.is_linear() -> False

p.is_quadratic() -> True

q[0].is_variable() -> True

(q[0] + 1).is_variable() -> True

(2 * q[0]).is_variable() -> False

(q[0] + 2 * q[1]).variables ->

​ [Variable({name: q_0, id: 0, type: Binary}),

 Variable({name: q_1, id: 1, type: Binary})]

"""
p = q[0] + q[1]

"""
print((q[0] + q[1]).substitute({q[0]: 1, q[1]: 0})) -> 1

11

print((q[0] + q[1]).substitute({q[0]: 1})) -> q_1 + 1

print((q[0] + q[1]).substitute({q[1]: q[2] * q[3]})) -> q_2 q_3 + q_0

print(q.substitute({q[0]: 1, q[1]: 0})) -> [1, 0, q_2, q_3]

print(q.substitute({q[1]: q[2] * q[3]})) -> [q_0, q_2 q_3, q_2, q_3]

"""

12

5.​ Constraints
The SDK MUST support setting constraints on the range of possible values for each
variable, as well as constraints on the range of possible values for polynomial
expressions. The SDK MUST support the following classes, methods, and operations for
setting constraints on decision variables and for constructing constraint objects using
polynomials.

5.1.​ Fix values
The SDK MUST support fixing the values of decision variables, by replacing part
of the variable array with numeric values in advance. The SDK MUST also
support imposing a constraint where a polynomial with another variable
represents a variable by replacing part of the variable array with a polynomial.

5.2.​ Limit the range of variable values
See chapter 3.2.

5.3.​ Limit the range of polynomial values
The SDK MUST manage equality, inequality, and other expressions representing
constraints on the range of possible polynomial values as constraint objects of
the Constraint class.

5.3.1.​ Equality constraints
The SDK MUST support the following helper functions to create constraint
objects that represent equalities. The SDK MUST support assigning
labels to these constraints.

Helper function Arguments Description

equal_to() Poly | PolyArray, float Constrains the polynomial to be equal to the
right-hand side

one_hot() Poly | PolyArray Constrains the polynomial to be equal to 1

13

Python

5.3.2.​ Inequality constraints
The SDK MUST support the following helper functions to create constraint
objects representing inequalities. The SDK MUST support assigning
labels to these constraints.

Helper function Arguments Description

less_equal() Poly | PolyArray, float Constrains a polynomial to be less than or equal to
the right-hand side

greater_equal() Poly | PolyArray, float Constrains a polynomial to be greater than or equal
to the right-hand side

clamp() Poly | PolyArray, tuple[float, float] Constrains the polynomial to be in a range between

5.3.3.​ Constraint list
The SDK MUST support the handling of multiple constraints as a
ConstraintList. The SDK MUST also support an empty ConstraintList
object. A ConstraintList object MUST be generated by adding
Constraint objects together. ConstraintList MUST also support adding a
Constraint object using the + or += operator.

5.3.4.​ Constraint weights
Multiplying a Constraint object by a number MUST multiply its weight.
Multiplication by numbers for weight MUST also be defined for
ConstraintList objects. Constraint MUST support the weight attribute to
obtain and set the weight of a constraint object. The default value of
weight MUST be 1.

5.4.​ Example code

from SDK import VariableGenerator, equal_to, one_hot, less_equal,
greater_equal, clamp

gen = VariableGenerator()
q = gen.array("Binary", shape=(3, 3))

14

q[0, :] = 0
q[:, 0] = 0
q[0, 0] = 1
"""
print(q) ->
​ [[1, 0, 0],

 [0, q_{1,1}, q_{1,2}],
 [0, q_{2,1}, q_{2,2}]]

"""
p = q.sum()​ # print(p) -> q_{1,1} + q_{1,2} + q_{2,1} + q_{2,2} + 1

q[2, 2] = q[1, 1]

"""

print(q) ->
​ [[1, 0, 0],

 [0, q_{1,1}, q_{1,2}],
 [0, q_{2,1}, q_{1,1}]]

"""

q = gen.array("Binary", shape=(3, 3))

c = equal_to(q[0, 0] + q[1, 1] + q[2, 2], 1)

print(c) -> q_{0,0} + q_{1,1} + q_{2,2} == 1 (weight: 1)

c = equal_to(q[0, 0] + q[1, 1] + q[2, 2], 1, label="diagonal sum")

print(c) -> diagonal sum: q_{0,0} + q_{1,1} + q_{2,2} == 1 (weight: 1)

c = equal_to(q[0], 1, label="1st row sum")

print(c) -> 1st row sum: q_{0,0} + q_{0,1} + q_{0,2} == 1 (weight: 1)

c = one_hot(q[0], label="1st row one-hot")

print(c) -> 1st row one-hot: q_{0,0} + q_{0,1} + q_{0,2} == 1 (weight: 1)

c_le = less_equal(q[0], 2)
c_ge = greater_equal(q[0], 2)

c_bw = clamp(q[0], (1, 2))

"""
print(c_le) -> q_{0,0} + q_{0,1} + q_{0,2} <= 2 (weight: 1)
print(c_ge) -> q_{0,0} + q_{0,1} + q_{0,2} >= 2 (weight: 1)
print(c_bw) -> 1 <= q_{0,0} + q_{0,1} + q_{0,2} <= 2 (weight: 1)
"""

q = gen.array("Binary", shape=(3, 3))

c0 = equal_to(q[0], 1)

15

c1 = equal_to(q[1], 1)
clist = c0 + c1

"""
print(clist) ->
​ [q_{0,0} + q_{0,1} + q_{0,2} == 1 (weight: 1),
 ​ q_{1,0} + q_{1,1} + q_{1,2} == 1 (weight: 1)]
"""
clist += equal_to(q[2], 1)

"""
print(clist) ->
​ [q_{0,0} + q_{0,1} + q_{0,2} == 1 (weight: 1),

 q_{1,0} + q_{1,1} + q_{1,2} == 1 (weight: 1),
 q_{2,0} + q_{2,1} + q_{2,2} == 1 (weight: 1)]

"""

q = gen.array("Binary", shape=(3, 3))
c = equal_to(q[0, 0] + q[1, 1] + q[2, 2], 1)​ # print(c.weight) -> 1.0

c.weight = 3​ ​ # print(c.weight) -> 3.0

c.weight *= 2​​ # print(c.weight) -> 6.0

c1 = equal_to(q[0], 1)

c2 = equal_to(q[1], 1)

clist = c1 + c2

"""

print(clist) ->

[q_{0,0} + q_{0,1} + q_{0,2} == 1 (weight: 1),

 q_{1,0} + q_{1,1} + q_{1,2} == 1 (weight: 1)]

"""

clist *= 2

"""

print(clist) ->

[q_{0,0} + q_{0,1} + q_{0,2} == 1 (weight: 2),

 q_{1,0} + q_{1,1} + q_{1,2} == 1 (weight: 2)]

"""

16

Python

6.​ Model
The SDK MUST support the following classes, methods, and operations to formulate the
combinatorial optimization problem using decision variables, objective functions, and
constraints.

6.1.​ Model class
The SDK MUST represent combinatorial optimization problems as instances of
the Model class. The Model class constructor MUST accept Poly or/and
Constraint / ConstraintList as arguments to represent the problem. Model
objects MUST also be generated by adding Poly and Constraint /
ConstraintList.

6.2.​ Model attributes
The Model class MUST provide the following attributes.

Attribute Type Description

objective Poly The objective function of the
model

constraints ConstraintList Constraints of the model

6.3.​ Example code

from SDK import VariableGenerator, Model, equal_to, one_hot

gen = VariableGenerator()
q = gen.array("Binary", shape=(2, 3))

objective = q[0, 0] * q[0, 1] - q[0, 2]
constraint1 = equal_to(q[0, 0] + q[0, 1] - q[0, 2], 0)
constraint2 = one_hot(q[1, :])
constraint_list = constraint1 + constraint2

model = objective + constraint1

"""
print(model) ->

17

minimize:
 ​ q_{0,0} q_{0,1} - q_{0,2}

subject to:
 q_{0,0} + q_{0,1} - q_{0,2} == 0 (weight: 1)

"""
model = objective + constraint_list

"""
print(model) ->

minimize:
 ​ q_{0,0} q_{0,1} - q_{0,2}

subject to:
 q_{0,0} + q_{0,1} - q_{0,2} == 0 (weight: 1),

 q_{1,0} + q_{1,1} + q_{1,2} == 1 (weight: 1)

"""
model = Model(objective, constraint_list)

"""
print(model) ->

minimize:
 ​ q_{0,0} q_{0,1} - q_{0,2}

subject to:
 q_{0,0} + q_{0,1} - q_{0,2} == 0 (weight: 1),

 q_{1,0} + q_{1,1} + q_{1,2} == 1 (weight: 1)

"""
model = Model(objective)
"""
print(model) ->

minimize:
 q_{0,0} q_{0,1} - q_{0,2}

"""
model = Model(constraint1)

"""

print(model) ->

minimize:

 0

subject to:

 q_{0,0} + q_{0,1} - q_{0,2} == 0 (weight: 1)

"""

model = Model(constraint_list)

"""

print(model) ->

minimize:

18

 0

subject to:

 q_{0,0} + q_{0,1} - q_{0,2} == 0 (weight: 1),

 q_{1,0} + q_{1,1} + q_{1,2} == 1 (weight: 1)

"""

objective = q[0,0] * q[0,1] - q[0,2]
constraint = equal_to(q[0,0] + q[0,1] - q[0,2], 0)
model = objective + constraint

"""
print(model.objective) ->

q_{0,0} q_{0,1} - q_{0,2}

print(model.constraints) ->
[q_{0,0} + q_{0,1} - q_{0,2} == 0 (weight: 1)]

"""

19

Python

7.​ Solver Client
The SDK MUST provide a SolverClient class that abstracts each solver. SolverClient
class MUST be able to set the attributes needed to meet the solver’s specifications.
The following are some common attributes.

●​ connection point
●​ API token
●​ execution parameters

SolverClient class MUST also contain information about the solver’s capabilities, such
as the types of variables, constraints, degrees, and so on that it can handle.

from SDK import XXXClient
from datetime import timedelta

client = XXXClient()
client.token = "YOUR_API_TOKEN"
client.parameters.timeout = timedelta(milliseconds=1000)
"""
print(client) ->

{"url":"https://XXX.com","token":"YOUR_API_TOKEN",
"parameters":{"timeout":1000}}

"""

20

8.​ Solver Execution
The SDK MUST support the following classes and methods to solve a combinatorial
optimization problem.

8.1.​ Solve function
The SDK MUST provide the solve() function to perform combinatorial optimization.
This function MUST take a Model object as its first argument and a solver client object
as its second argument, optimizing the model using the solver associated with the solver
client. The return value MUST be a Result object.

Argument Type Description

model Model Created in Model Formulation

client Client Created in Solver Client

8.2.​ Retrieving the result
A Result object returned by the solve function MUST contain information about the
solution returned by the solver and the time taken to run it. Result MUST contain not
only the best solution but also multiple solutions. If Result contains multiple solutions,
the best solution MUST be provided as the best attribute. The best solution refers to the
solution that satisfies all the constraints and has the smallest objective function value
among the multiple solutions.

Attribute Type Description

best Solution The best solution

Each solution MUST be obtained as an instance of the Solution class by indexing on
Result. Solution class MUST support the following attributes.

Attribute Type Description

objective float The value of the objective function

values Values The value of each variable in the solution

feasible bool Whether the constraint is satisfied or not

21

Python

time timedelta The time at which the solver finds the solution

8.3.​ Example code

from SDK import VariableGenerator, one_hot, XXXClient, solve
from datatime import timedelta

gen = VariableGenerator()
q = gen.array("Binary", 3)

objective = q[0] * q[1] - q[2]
constraint = one_hot(q)

model = objective + constraint

client = XXXClient()
client.token = "YOUR_API_TOKEN"
client.parameters.timeout = timedelta(milliseconds=1000)

result = solve(model, client)
"""
print(result.best.objective) -> -1.0
print(result.best.values) -> Values({Poly(q_0): 0, Poly(q_1): 0, Poly(q_2): 1})
print(result.best.feasible) -> True
print(result.best.time) -> datetime.timedelta(microseconds=27965)
"""

22

9.​ References
This chapter describes the definition and specification of the objects that SDK MUST
support.

9.1.​ Algebraic classes and numerics
9.1.1.​ SDK.Poly class

Method Return type

as_variable(self) Variable

degree(self) int

evaluate(self, values: Values) float

is_linear(self) bool

is_number(self) bool

is_quadratic(self) bool

is_variable(self) bool

Attribute Return type

id int

lower_bound float | None

name string

type VariableType

upper_bound float | None

variables list[Variable]

9.1.2.​ SDK.PolyArray class

Method Return type

evaluate(self, values: Values) ndarray[Any, dtype[numpy.float64]]

sum(self, axis: int | tuple[int, ...] | None) Poly | PolyArray

23

Attribute Return type

ndim int

shape tuple[int, …]

size int

9.1.3.​ SDK.Variable class

Attribute Return type

id int

lower_bound float | None

name string

type VariableType

upper_bound float | None

9.1.4.​ SDK.VariableGenerator class

bounds : Defaults to (None, None)
name : Defaults to ''

Attribute Return type

variables list[Variable]

24

Method Return type

array(self, type: str | VariableType, shape: tuple[int, ...] | int,
bounds: tuple[float | None, ...] = (None, None), name: str = '')

PolyArray

scalar(self, type: str | VariableType, bounds: tuple[float |
None, ...] = (None, None), name: str = '')

Poly

9.1.5.​ SDK.sum() function

Method Return type

sum(list)
sum(Iterator)

Any

sum(PolyArray, axis: int | Tuple[int, …] | None) Poly | PolyArray
axis : Defaults to NoneConstraint classes and functions

9.1.6.​ SDK.VariableType enum class

Member Type

Binary VariableType.Binary

Integer VariableType.Integer

Ising VariableType.Ising

Real VariableType.Real

9.2.​ Constraints
9.2.1.​ SDK.Constraint class

Method Return type

is_satisfied(self, values: Values) bool

Attribute Return type

conditional tuple[Poly, str, Union[float, tuple[float, float]]]

label string

penalty Poly

weight float

25

9.2.2.​ SDK.ConstraintList class

Method Return type

append(self, value: Constraint) None

remove(self, value: Constraint) None

9.2.3.​ Functions

Method Arguments Return type

equal_to()
one_hot()
less_equal()
greater_equal()

poly: Poly, right: float, label: str = '' Constraint

array: PolyArray,
right: float,
label: str = '',
axis: int | tuple[int, ...] | None = None

Constraint |
ConstraintList

clamp()

poly: Poly,
bounds: tuple[float | None, float | None],
label: str = ''

Constraint

array: PolyArray,
bounds: tuple[float | None, float | None],
label: str = '',
axis: int | tuple[int, ...] | None = None

Constraint |
ConstraintList

9.3.​ Model classes and functions
9.3.1.​ SDK.Model class

Method Return type

copy(self) Model

get_variables(self) list[Variable]

Attribute Return type

constraints ConstraintList

objective Poly

variables list[Variable]

26

9.4.​ Solve (Solve classes and functions)
9.4.1.​ SDK.Result.Solution class

Attribute Return type

feasible bool

objective float

time timedelta

values Values

9.4.2.​ SDK.Result class

Attribute Return type

best Solution

client_result Poly

execution_time list[Variable]

num_solves int

response_time timedelta

solutions SolutionList

total_time timedelta

9.4.3.​ SDK.Result.Values class

Method Return type

items View of list[tuple[Poly, float]]

keys View of list[Poly]

values View of list[float]

27

	Quantum Open Development Ecosystem (QODE)
	Optimization Division
	Specification Document
	
	
	1.​Overview
	2.​System architecture and optimization steps
	1)​Create decision variables
	2)​Create objective function
	3)​Construct constraints
	4)​Formulate optimization model
	5)​Specify solver client attributes
	6)​Execute solver

	
	3.​Decision Variables
	3.1.​Variable Generator
	3.2.​Methods and Arguments
	3.2.1.​scalar()
	3.2.2.​array()
	3.3.​Get variable information
	3.4.​Example code

	4.​Polynomials
	4.1.​Arithmetic of polynomial
	4.2.​Arithmetic of polynomial arrays
	
	4.3.​Attributes and methods of polynomial
	4.4.​Example code

	
	5.​Constraints
	5.1.​Fix values
	5.2.​Limit the range of variable values
	5.3.​Limit the range of polynomial values
	5.3.1.​Equality constraints
	
	5.3.2.​Inequality constraints
	5.3.3.​Constraint list
	5.3.4.​Constraint weights

	5.4.​Example code

	
	6.​Model
	6.1.​Model class
	6.2.​Model attributes
	6.3.​Example code

	
	7.​Solver Client
	
	8.​Solver Execution
	8.1.​Solve function
	8.2.​Retrieving the result
	8.3.​Example code

	
	
	9.​References
	9.1.​Algebraic classes and numerics
	9.1.1.​SDK.Poly class
	9.1.2.​SDK.PolyArray class
	
	9.1.3.​SDK.Variable class
	9.1.4.​SDK.VariableGenerator class
	
	9.1.5.​SDK.sum() function
	9.1.6.​SDK.VariableType enum class

	9.2.​Constraints
	9.2.1.​SDK.Constraint class
	9.2.2.​SDK.ConstraintList class
	9.2.3.​Functions

	9.3.​Model classes and functions
	9.3.1.​SDK.Model class
	

	9.4.​Solve (Solve classes and functions)
	9.4.1.​SDK.Result.Solution class
	9.4.2.​SDK.Result class
	9.4.3.​SDK.Result.Values class

